Boxicity and topological invariants
نویسنده
چکیده
The boxicity of a graph G = (V,E) is the smallest integer k for which there exist k interval graphs Gi = (V,Ei), 1 ≤ i ≤ k, such that E = E1 ∩ · · · ∩ Ek. Equivalently, the boxicity of G is the smallest integer d ≥ 1 such that G is the intersection graph of a collection of boxes in R (a box in R the cartesian product of d closed intervals of the real line). In the first part of the talk, I will prove that every graph on m edges has boxicity O( √ m logm), which is asymptotically best possible. I will use this result to study the connection between the boxicity of graphs and their Colin de Verdière invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph G, the boxicity of G is at most the Colin de Verdière invariant of G, denoted by μ(G). We will observe that every graph G has boxicity O(μ(G)(logμ(G))), while there are graphs G with boxicity Ω(μ(G) √ logμ(G)). In the second part of the talk, I will focus on graphs embeddable on a surface of Euler genus g. I will prove that these graphs have boxicity O( √ g log g), while some of these graphs have boxicity Ω( √ g log g). The proof of the upper bound is based on recent results on acyclic coloring of graphs on surfaces. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces. Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France E-mail address: [email protected]
منابع مشابه
Boxicity and Cubicity of Product Graphs
The boxicity (cubicity) of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in Rk. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, ...
متن کاملApplications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملSome Results on Forgotten Topological Coindex
The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...
متن کاملLocal and union boxicity
The boxicity box(H) of a graph H is the smallest integer d such that H is the intersection of d interval graphs, or equivalently, that H is the intersection graph of axis-aligned boxes in R. These intersection representations can be interpreted as covering representations of the complement H of H with co-interval graphs, that is, complements of interval graphs. We follow the recent framework of...
متن کاملPoset boxicity of graphs
A t-box representation of a graph encodes each vertex as a box in t-space determined by the (integer) coordinates of its lower and upper corner, such that vertices are adjacent if and only if the corresponding boxes intersect. The boxicity of a graph G is the minimum t for which this can be done; equivalently, it is the minimum t such that G can be expressed as the intersection graph of interva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 51 شماره
صفحات -
تاریخ انتشار 2016